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ABSTRACT 

A randomly fluctuating longitudinal pressure gradient of a. non-Gaussian 
form and arbitrary power spectrum will cause a randomly fluctuating velocity 

to be superimposed on the steady incompressible flow in a chaLnnel Pressure-- 

gradient and velocity correlations, frequency response functions and system 
power loss a r e  calculated. Numerical random pressure gradient signals 
were generated using Fourier se r ies  expansion, with random picking of dis- 

crete Fourier spectrum values and a nonlinear no memory trar~sf ormat ion, 
Numerical values of the velocity signal were then calculated by Ifnear trans- 
formation of the pressure-gradient signal. Pressure-gradient and velocity 
signals were compared for dsference in amplitude, frequency, t i r x  lag, and 
probability df stribution functions, 

INTRODUCTION 

The study of random fluctuations in engineering systern's is receiving 

increasing attention. This is because practically all physical systems have 

some randomness which at t imes can cause the system behavior to be dras- 

tically dsferent  from the steady case, 
The analysis of these stochastic problems is d ~ f i c u l t ,  and usually only 

certain statistically averaged properties a r e  cabtained, such as the auto- 
correlation, which give only part  of the idormation concerning the s y s e  rn @ 

With the development of the high speed electronic computor it has become 



feasible to study the random behavior of systems numerically, espeeialb 
since the development of the fast  Fourier transform algorithm which is a 
numerical method of rapidly taking Fourier transforms. This numerical 

(calculation with random signals allows any stati stical property of the signal 
to be calculated e. go probability distribution function, by the appropriate 
numerical techniques. 

The present analysis describes the effect of a randomly f la~ctuxing 
pressure gradient on the flow of an incompressible fluid in a el-aannel (fig. I) 
both analytically and numerically, A pressure -gradient signal havrng an 
arbitrarily specified probability d i s t r ~ u t i o n  and power spectrum is gener- 
ated numerically. From this the velocity signal can be calculated, The 

velocity signal can then be analyzed for i t s  probability distribution function, 

power spectrum and any other characteristic of interest, Analytical results 
a r e  computed where possible and the numerical and analytical are 
compared, 

In a previous analysis (ref. 1) this same flow problem w a s  studied for  

the case where the pressure gradient fluctuations were restricted to a 
Gaussian (normal) prob%bility distribution. Since the fluid velocity w as 
linearly related to the pressure gradient, the velocity fluctuatilons would also 
be normally distributed, Therefore all the velocity characteristies would be 

given by the autocorrelation function of the velocity. However, fo r  the non- 
Gaussian pressure gradient the velocity distribution is also non-Gaussian 

and cannot be  characterized by the autocorrelation function alone, By use sf 
a numerical method however the velocity signal is generated na~merreallg and 

a11 its statistical characteristics can be found by the appropriajte statistical 
analysis of the signal. 

Tien and Lienhard studied a similar problem for pipe flow (ref" 2) and 

included the effect of turbulent eddy diffusivity in Ref. 3. Rowc3ver only the 
autocorrelation results  were given, !This would not be  sufficient to fully 
characterize a non-Gaussian system. 

As shown in Ref. 1 it is possible to generate numerically a Gaussian 

signal with a given power spectrum, Then by a nonlinear, no rnemory trans- 
formation this initial signal can be transformed into a pressure gradient sfg- 

nal with the desired non-Gaussian probability distributions and associated 



power spectrum. From this, through a linear transformation the veloeiLy 
signal can be found and malyzed fo r  its statistical properties, This process 

is outlined in Fig. 2. 

ANALYSIS 

In the present case we a r e  interested in generating a random pressure - 
gradient signal with a ncan-Gaussian probhi l i ty  distribution. 'To do SO wc 

must f i rs t  generate a Gaussian signal then transform it to the desired signal, 
The method used is illustrated in Fig. 2. A Gaussian signal ~ ( t )  with d 

specsbed spectrum is s d j e c t e d  to a suit&le nonlhear no memory transiolb- 

mation such that a pressure-graidient signal y is obtained having the desPred 
probability density function p . This transformation can be wri t ten as 

Y 
y = g(w), We can relate the distribution functions sf y and w by the welL 
known relation 

The power spectrum of the generated signal Sm(u) must be specified 
so that the nonlinear transformation, y = g(w), will have the desired povder 

spectrum S 
YY' 

The aulocorrelation of the generated w signal, which is the Fourier 
transform of the pmelp spectrum, is obtained in t e rms  of the desired pressure 
gradiepl$ signal autocorrelation as follows. 

Generated Signal AuLocorrelation 

We can write the pressure-gradient signal autocorrelatioaa as f0110ws 
(ref. 4, pg. 51) 

where pw is the normal bivariate distribution given by 
P 2 



2 
p w ~ r  is the normalized autocorrelation sw/~w, and 2 is the variance. .. .. 

It has been shown in Ref. 4 (p. 52) that the R?,?, can be written as an 
r r 

algebraic function of pww. Then for a known Gaussian signal, pw, and kncmn 

transformation, y = g(w) ; the autocorrelation pm of the input Gaussian 
signal that, after the nonlinear transformation to the pressure signal., wil l  have 
the desired autocorrelation R can be calculated by iteration, 

YY 
A simpler method of calculating pww is given in Ref. 5 for the case 

where the nonlinear transformation between y and w is given in the 
specified form, 

The K and a! are adjustable parameters that allow a wide variety of 
relationships between y and w to be approximated. 

The plot of y versus w given by Eq, (4) a r e  plotted in Fig, 3 a 

Although all values of w a r e  possible the values of y a r e  restricted bemeen 
&.5/K. The value of K thus determines the cutoff amplitude of ye, For 
a! = 0 .all values of w transform to a. 5/K giving a rectangular wave for 
As a! becomes large, Eq. (4) reduces to ~y-w/f-& acw) so that yaw. 

From Eqs. (1) and (4) we can write the distribution of y as 



Eq. (5) can be  evaluated by finding w for  a specified value of y using 

Eq. (4). Then p /K can be evaluatedfrom Eq. (6). The plot d py/K 
Y 

versus y K is shown in Fig. 4. Significantly dffferent probability df stributions 

p~ 
can be obtained for different values of a! and K. 

If y = g(w), given by Eq. (4), is substituted into Eq. (2), then as shirwrr 

in Ref. 5, R is given by 
YY 

This can be evaluated at T = 0 to give 
1 

; where B = sin -1 R ( 7 = 0 ) = -  
YY 

2nK 2 

We can now write 

which can be inverted to 

This gives the neede'd Gaussian autocorrelation p,, so that the nonlinear 

transformation given by Eq. (4) will give the desired pressure gradient 
autocorrelation p 

YY' 

Pressure  Gradient Autocorrelation 

A common form of random fluctuation is called a stationary Gaussian 
Markoff Process.  This gives an exponential form of the pressure gradient 
autocorrelation (ref. 6, pg. 215). 

where the rate of fluctuation A and the time span T have been nonldimen- 

sionalized by 

where v is the fluid kinematic viscosity and d is the distance across the 

channel. The X is a dimensionless measure of the fluctuation rate, It can 



also be considered the inverse of the dimensionless characteristic decay time 
of the autoeorrelation. The larger the X value, the greater the fluctuation 
rate of the pressure gra&ent signal. The fluctuation rate can be eh%r..acker - 
ized by the number of crossings of the o value of the signal per unit time, 

The quantity u2 is the mean square value of the pressure flueiuaiii.ns (r2: 
7' 

It also c m  be considered the integrated power spectrum of the p~reseure signah 
since 

where S is the power spectrum and f is the frequency. The lax ger the 0 2 
YY Y 

value, the larger the magnitude of the pressure fluctuations. 
The autocorrelation of the generated signal from Eq. (9) for the case oA 

the stationary markoff pressure gradient signal becomes 

4vw 
The dimensionless autocorrelations pww and p a re  shown in Flg. 5. 

YY 
Since the power spectrum Svv is the Fourier transform of the auto- 

I [ 

correlation, R , we can write the dimensionless power spe@t:rum of the pres- 
YY' 

sure gradient i s  S + = YY = 2X 
yY R (0) X2 + w2 YY 

where o is the angular Fourier frequency, 2 d .  The generatled s ig~~al ' s  
dimensionless power spectrum is given by 

J -* 
Expanding sin in a, ser ies  give-s, for the present pressure gradient 
markoff process case, 

Generation of a Gaussian Rmdom Signal by Model Smpl ing  

The Gaussian random signal w(t) can be obtained as shown in Ref, C by 
writing the signal as an inverse discrete Fourier Transform, wWn9 -where n 



are integer values. It follows that the discrete Fourier spectra can be con- 
sidered a Gaussian random variable with a zero mean and a variance Lha~ 

can be related to the power spectrum, We can use a random sampling pro- 
cedure to pick the discrete Fourier spectrum values from the appropriate 
distribution. Then by use of P9fast Fourier t ransformsrv we can obtain the 
signal values at discrete points, This detailed procedure is as foilovis- 

As shown in Ref. 1 the power spectrum, Sww9 of a signal w which bas 
a Fourier spectrum w, can be written as 

lim 1 
(17) 

Where WE) is the complex conjugate of the Fourier spectrum. The WoR -- 
and wwI a r e  the rea l  and imaginary components of the Fourier spectrum. 
The term (. ) denotes ensemble averages. Thus the power spectrum can be 

related to the average of the squares of the Fourier spectrum of the randor1 

signal. 

Discrete Fourier transform. - When a signal is to be analyzed on a 
digital computer it is the discrete F-ourier spectrum rather than the con- 

tinuous spectrum that must be  considered* If the Fourier speetrka.m wu 
is band limited so that w, = 0 for f > f y  we can write (ref. 7, pg. 152) 

where 

a f 
P 

1 in%d/fp df QW - cn - - W w  
f~ 

Since w, = 0 for f > f y  we can see that, using I?-'( ) to denote inverse 
transforms, then 

c f = .-I [,'J = wn (i = -5 
n P  (20) 

f p  



Thus knowing w at discrete values of t allows w, to be evaluated from 
Eqs. (18) and (20). Then by taking the inverse continuous Fourier rrans-iorm 
of w, we obtain w at all times. Since we assumed t = n/f = nAr we can 

P 
see that 

which is sometimes called the Nyquist interval. 
If we take N + 1 samples of wn we can write Eq. (18) as 

+N/2 

Since f P- l / A t  = N/T we can write the above as 
P P 

As  shown in Ref, 1, this can be considered a discrete Fourier transform, The 

inverse discrete Fourier transform can then be written as 
N/2 

- cTT) ei2rkn/N 
wn - $24) 

/2 
So that Eqs. (23) and (24) form a discrete Fourier transform pair tnat are 
approximations to the continuous Fourier transform pair, 

Fast Fourier transforms. - A numerical method has been devele3ped9 

called the fast Fourier transform (ref. 8), for evaluating disclrete Fourier 
transforms in a very efficient manner on a digital computer , One imple- 

mentation readily available is the IBM-scientsie subroutine package calhea 
HLAIWI/DHLARM. Many others a r e  available. 

Model sampling to generate Gaussian signal. - We can ex]?arld sv ok 
in Eq. (24) into rea l  and imaginary parts. Since wn is a real  function 
the imaginary term must be zero and so w must be an even function 

UnR 
around n = 0 while wUnI is an odd function around n = 8, Then \& c can M rite 
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2mk - 2 d )  
on1 sin - 0 5 )  

N N / 
It has been shown in Ref. 1 that for  a Gaussian random process w wnk 

and * w n ~  a r e  normally distributed, independent, random variables with 

zero mean and variance given by 

Then from Eqs. (17) and (26) we can obtain 

1 'p 
We can generate the values of wwnk and wwnI by first ~vriting their 

joint Gaussian probability distribution 

Following the procedure in Ref. 1 we can randomly sample values from the 
above distribution with the equations 

1/2 
on1 = (2 (win)) (-In Rr)1/2 sin 2rR6 

where Rg and Rr a r e  two different random numbers picked from a uniform 

distribution that is constant between O and 1. These values can readily be 

generated on a digital computer. Recalling that w is an even funelion 

and wwnI is an odd function, in the particular fast Fourier prograrn used 

(HARM/DHARM), we need only find wwnR and wn1 from :n = O to N / 2  

Then w = w  
w, ( ~ / 2 ) + 1 ,  R o, (N/2)-1, R9 etc. Similarly w w,  Q N / ' ~ ) , L  I, 1 = 

etc. The value of w -ww9 (N/2)-I7 19 0 9 0 7 1  is equal to zero. 



After finding the values of w we can substitute them into Eqe  (25) 
w ,  n 

and using the fast Fourier transform routine find thevalues of wk. 
rp 

The sample mean. W and the sample variance wL a r e  then fsuird f r s m  

the wk values*-With this the value of wk can be normalized, 
wv = (w,- k / w 2  Then the distribution and autocorrelatioil are foiurtd 

by using available subroutines on the values of wk. 
The example case is carried out using the power spectrum Sww g6ve.n 

by Eq. (161, The normalized signal wv is plotted in Fig, 6 for  a X value 
of 1. 

/ In Fig. '7 the cumulative distribution function of wv obtained nunleri- 
cally i s plotted along with the Gaussian cumulative distribution function w i t L  
good agreement. This shows that the w v  is normally distributed as expected, 

The numerical results  for  the autoeorrelation of the wq si~mal 4s shown 
in Fig. 5 and compares well with its theoretical result, although the :agree- 
ment seems to fall off for  large time lag r. 

Generation of y signal from w signal. - To transform the w signal 
into the pressure gradient signal y we use Eq. (4) which allows us for  each 
wn(nAt) to calculate a ?;(n~t) value for each n from 0 to N. This gives 
the pressure gradient signal with the desired probability distribufiio~~ and 
autocorrelation. This signal is normalized to y v  and shown in. Fig, 6, 
Since the normalized pressure gradient signal cannot have any values larger 
than (0.5/0 ) we can see this cutoff in Fig. 6. It can be seen from Fig, 4 

Y 
that the pressure cutoff is at lower values of y v  for  smaller values of X 

since the normalizing factor a increases for decreasing a ,  see Fig, 4, The 
Y 

cumulative distribution of the y signal is shown in Fig. I where %@: can be 

seen to agree with the analytical result. The autocorrelation of the y 8  slgi~laI 

is shown in Fig. 5 and also agrees with the analytical result,  

Relation Between Velocity Signal and Pressure  Sign.al 

This procedure follows the analysis in Ref. 1. To calcul%te the fluid 

velocity signal from the pressure gradient signal we must f i rs t  solve the 

momentum equation, For  viscous incompressible flow between parallel plc~tes 
with constant properties in the fully developed flow region (see fig* I) the 



momentum equation can be written as 

au I a2u -=  - - P ( T ) i -  v- 
in' P ay2 

We can let the velocity and the pressure gradient consist of a steady part rr:d 

a nonsteady part U = Us + Ut ; P -= Ps + Pt. Normalizing as foBLows 

we can obtain 

The solution for v as shown in Ref. 1 is given by 

v = h(8, y)y (t - 8)dQ =: h(t - 6 ,  y ) ~  (6)dij 

where h is the weighting function given by 

I 
for  8 > 0 1 \ 

h(8) .= 0 f o r  8 < 8 r r  1 
where M =: mr.  The Fourier transform of Eq. (32) is given by 

where 

and YM = 4 sin My/M. The H is sometimes called the system transfel- func-  
tion. We can write the rea l  and imaginary par ts  of H as 



2 ' j 2  and the 
The gain factor of the system function is given by ( H I = (HR + HI 1 
phase factor of the system function by q = tan-' (HI/HR). The gain phase 

factors are plotted in Fig, 8. As can be seen in the figure, for  srnalii values 
of angular frequency w the system frequency transfer  functies~n approaches the 
distortionless limit I H I = I H 1 d; qd = -utL to give 

Then taking inverse Fourier transforms of Eq. (34) 

This shows for very low frequency, w - 0, the velocity signal 6luplie2~tes the 

pressure signal but is a fraction I H 1 of the pressure  signal amplibitde . The 

velocity signal lags the pressure signal by a time increment tl. We  can find 

the limiting value of tl as w - 0 as 0.0781. 

The gain factor decreases in magnitude close to the wall, This shows 
that the magnitude of the velocity fluctuations close to the wall is smaller than 

near the center of the channel. The percent decrease in the gain factor at the 

higher frequencies is larger near the center of the channel so that there wil l  

be relatively more damping of the higher frequency velocity f1uctuar;ions near 
the center of the channel than near the wall. The phase factors are smaller 
near the channel wall than near the center showing that there is a sm,aller 
signal lag of the velocity signal behind the pressure signal closer to the wall, 

The c ros s  correlation of the pressure and velocity fluctuations can be 
obtained from Eq, (32) as 



where R is the time lag. Since the c ros s  spectrum is the Foterfer trans- 
form of the c ross  correlation, by using the convolution theorem we ~:m write 

Syv(4  = H(w)Syy(w) (39'1 

We can find the velocity autocorrelation similarly as 

Then we can write the power spectrum as 

The pressure-velocity c ros s  correlation for the present ease can be 

written using Eqs. (lo), (33), and (38) as 
f cO 

2 
Y M 

fo r  T 2 0 

m=l,  3, 5 
Ryv(7) = 

2 yM B"/(M~ + A )  for  T < O  
Y 

5 (42) 

In a similar m er we can calculate the velocity autocorrelation 
from Eqs. (lo), (33), and (40) as 

2 - M ~  7- /(M'+M*~) -7 I (431 
rj 

The normalized power spectrums are plotted in Fig. 9. The pressure gradient 
spectrum from Eq. (14) fo r  the stationary markoff process e m  be seen to have 
a lower frequency cutoff for  lower values of X o r  slower ra tes  of ;f"luctuations, 
The normalized velocity spectrums given by Eq. (41) are also shown and far 
the lower values of h are close to the normalized pressure gradient spect- L U ~ S  

and not strongly dependent on distance across  the channel. However at the 
higher fluctuation rate, o r  large A, the power spectrum of the velocity sig- 

nal have more of the power concentrated at the lower frequency then the poylJer 



spectrum of the pressure gradient signal. 

The mean square velocity, (v2), can be obtained from Eqo (43) since 

The values of 2, across the channel for  different values of X are shown 
in Fig. PO, 

Since the gain factor is smaller near the wall (y = Ool) compared to that 
at the centerline (y = 0,5), the mean square veloeity is smaller near the wall 
as compared to the centerline. The mean square velocity goes to zero at the 
wall (fig, 10) a s  would be expected from the zero wall velocity bowdary 

condition, The gain factor is greatest at the lower frequency and has a high- 

frequency cutoff (cf. fig, 8). Therefore a given mean square pressure 
gradient value the maximum value of is found when the pressure 

adient spectrum is a delta function at small w. The minimum ~ial-oae of 

2, occurs if the pressure spectrum is a delta function at large value 
of o o  

Power Dissipation Due to Velocity Fluctuations 

It is desirable to know how much additional power must be supplied to the 
flow system to maintain the same average flow rate for the fluctuating flow as 
compared to the steady flow case, As shown in Ref. 1, the external rate of 
work done by the pressure force we is equal to the sum of the rate of increase 
in kinetic energy K, and the rate of dissipation of energy due to interns-l 
friction wf. If we then take the ensemble average, the rate af change of the 
kinetic energy term will be zero because the process is staticanary, We  then 
have the external rate of work done by the pressure force we equal. to thc 
rate of dissipation of energy due to external friction wf 

1 

( ( a u / a ~ ) ~ )  ay 

1 
where 'PU is the integrated value across the channel, U q y .  



To find the rate of dissipation of energy due to internal friction we can 
then write 

E w e l e t  w betherateofdissipationduetosteadyfPow, the ra t ioo f  
f ,  s 

increased dissipation due to the unsteady flow over the steady flow dnssipa- 

tion can be written as 

Integrating Eq. (42) over y and substituting the result Eq. (5111 give 
Ca 

This result is shown in Fig. 11 as a function of the fluctuating rate param- 
eter  X. As X becomes very large, that is, as fluctuations of the pressure 
gradient become very rapid, the frictional power loss  reduces to  the steady 
power loss, The frictional power loss  increases with smaller  lapalues of X ,  

that is, with slower fluctuations of the pressure gradient. For a. given mean 
square pressure gradient the maximum rate  of power dissipation that can be 

achieved can be seen from Eq, (47) to be when S is a delta function at 
YY 

the maximum value of 3 which is at small w.  The mfnirnum ]power dissipa- 
tion occurs when S is a delta function at the minimum value of g: f a  e., 

YY 
w large . 

Calculating Velocity Signal From Pressure  Signal 

We can write the velocity signal as before (eq. (24)) 



From Eq. (34) we can write 
/ 

The values of ykn  can be obtained by takinglthe fast Fourier i ransiorm 
of y;l which were calculated previously. Then by use of Eq. (50) we  can 
obtain the values for  vUno The values of vn a r e  then obtained using the 
inverse fast Fourier transform, From these values the normalized values 

":, can be found, These a r e  plotted in Fig, 12. When compared to the pres- 
sure  signal it  can be seen there is rounding of the sharp cutoff" of the pressure 
signal. Fig. 7 shows the cumulative distribution of the velocity signal 

which can be seen to be similar  in shape to the cumulative df st]-ibutrsn of the 

pressure signal but tending towards the Gaussian cumulative distribution, The 

autocorrelation of the velocity signal is shown in Fig, 13 to agree fairly v ~ e l l  

with the theoretical results  given by Eq. (43) but diverges somelvhat for  large 
lag t imes T .  

SUMMARY AND CONCLUSIONS 

The effect of imposing a randomly fluctuating pressure gradient with a 
non-Gaus sian probability distribution and an arbitrary spectrum on a fluid in 
a channel causes a randomly fluctuating velocity component to be superimposed 
over the steady flow. The mean value of the velocity fluctuation is zero, The 

mean square value of the velocity fluctuations which is a measure of the am-  

plitude of the velocity fluctuations is highest in the center of the channel and 

reduce to zero at the wall. Also the slower the ra te  of the pressure gradieLt 
fluctuations the greater the amplitude of the velocity fluctuations. 

The pumping power loss  was increased by the flow fluctuatlions, the slov~er 
pressure gradient f luctuation rate giving the larger power loss, 

The non-Gaussian random pressure gradient signal with a stationary mark- 
off power spectrum was obtained numerically by f i rs t  generating a Gaussian 

signal with a specified power spectrum. This was generated by first choosing 



random values of the coefficients of the discrete Fourier spectrum repre- 
sentation from a Gaussian distribution whose variance was obtained from tne 
specified power spectrum. Taking fast Fourier transforms sf the discrete 
Fourier spectrum gave discrete values of the Gaussian signal, This signal 
was then transformed through a nonlinear, no memory, relation to the de- 

s i red non-Gaus sian fluctuating pressure gradient signal. The vehoc i t  y signal 
was obtained by first taking the fast Fourier transform of the pressure gra- 
dient signal and multiplying the resulting discrete Fourier spectrum b y the 
system frequency response function. This gave the discrete velocity Fsurier 
spectrum which was then fast  Fourier transformed to the velocity signal, The 

numerical signals were then analyzed to obtain their correlations awtl frequency 
distribution functions. 

The normalized velocity signals were close in value to the normalieed 
pressure gradient signal but had a dimensionless time lag vT'/d2 of about 

0.0'781 for the lower pressure gradient fluctuation ra tes  (small A), At  tIre 
higher ra tes  of fluctuation of the pressure gradient signal (large A) less of 
the high frequency fluctuations pressure gradient signal appear In the veloe-- 

ity signal. More so near the center of the channel rather than near the wall, 
Also the time lag of the veloeity signal behind the pressure gradient signal is 

larger near the center of the channel then near the wall. The "velocity signal 
tended to overshoot the upper limit of the pressure gradient signal, 

The nondimensional cumulative probability distribution for the velocit3 

signal is very close to the cumulative probability distrib.erlion for the pressure 

gradient at the low fluctuation rate (small A).  However at the higher values 
of X the normalized cumulative probability distribution for the velocity 
approached the Gaussian cumulative probability distrib.butfon, 
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APPENDIX - SYMBOLS 

complex coefficients 

spacing between parallel plates 

expected value 

frequency 

frequency increment, l /Tp 

maximum frequency 

Fourier transform, inverse Fourier transform 

frequency response function 

gain factor 

weighting function o r  impulse response function 

unit imaginary number 

mn.; mPn. 

number of samples 

pressure gradient 

probability distribution function 

correlation 

spectrum 

time 

period of record 

dimensionless time, vT/d 2 

time between sample 

fluid velocity 

2 steady dimensionless velocity, - vpus/d Ps  



transient dimensionless velocity, - 
generated Gaussian signal 

coordinate ac ross  channel 

4 sin My/M 

dimensionless coordinate ac ross  channel, Y/d 

parameter (eq, (4)) 

2 constant; sin-'(l/l c a ) 

dimensionless pressure gradient, pt/Ps 

parameter given by Eq, (7) 

measure of rate of fluctuation of pressure signal 

dimensionless measure of rate of fluctuation of pressure 

signal, iId2/v 

kinematic viscosity 

normalized autocorrelation R ~ ~ / Q ( O )  

variance 

dimensionless time difference, t2 - t l  
phase factor 

normalized power spectrum, S/R(O) 

angular frequency, 27rf 

sample average 

ensemble average 

complex conjugate 

normalized variable 



Sub scripts  : 

F fundamental frequency o r  lowest frequency, l/Tp 

B related to frequency response function 

I imaginary 

R rea l  

s steady component 

t fluctuating component 

Y related to pressure signal 

w Fourier spectrum 
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Figure 6. - Normalized generated Gaussian signal and pressure gradient 
signal. 
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Figure 9. - Normalized power spectrums. 
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Figure 12. - Normalized pressure gradient and velocity signal. 
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signal. 


